Оксидирование стали – все способы нанесения защитного покрытия
Под оксидированием стали понимают процедуру создания на металлических поверхностях оксидной пленки. Данная операция проводится для образования декоративных и защитных покрытий, а также специальных диэлектрических слоев на стальных изделиях.
Особенности химического оксидирования
Интересующий нас процесс можно выполнить по нескольким технологиям. Оксидирование принято делить на:
- химическое;
- электрохимическое;
- термическое;
- плазменное.
При химическом оксидировании поверхность изделий обрабатывают расплавами либо растворами хроматов, нитратов и других окислителей, что увеличивает антикоррозионную защиту металла. Подобная процедура может выполняться посредством применения щелочных или кислотных композиций.
Химическое оксидирование щелочного типа выполняется при температурах от 30 до 180 градусов. Для него используют щелочи и небольшое количество окислителей. После обработки деталей щелочными соединениями их обязательно промывают (весьма тщательно), а затем просушивают. В некоторых случаях заготовки, прошедшие процедуру оксидирования, дополнительно промасливают.
Для кислотной операции обычно применяют композиции, состоящие из 2–3 кислот – соляной, ортофосфорной, азотной, в которые добавляют в незначительных объемах соединения марганца и другие соединения. Температура такого способа оксидирования варьируется в пределах 30–100 градусов. Используется он чаще всего для декорирования и защиты от коррозии ржавления.
Химическое оксидирование любого из двух описанных типов позволяет получать в производственных и в домашних условиях пленки с достаточно высокими защитными характеристиками. При этом электрохимическая процедура предохранения стали от коррозионных явлений считается более эффективной. Именно поэтому химическое оксидирование для стальных изделий используется реже, нежели электрохимическое.
Анодное оксидирование – что оно собой представляет?
Анодный процесс (именно так обычно называют оксидирование электрохимического вида) осуществляется в твердых либо жидких электролитах. Он обеспечивает высоконадежные пленки следующих типов:
- тонкослойные покрытия с толщиной от 0,1 до 0,4 микрометров;
- электроизоляционные и износостойкие слои толщиной от 2–3 до 300 микрометров;
- защитные покрытия от 0,3 до 15 микрометров;
- специальные эмалеподобные слои (именуются в среде специалистов эматаль-покрытиями).
При анодировании поверхность окисляемого изделия характеризуется положительным потенциалом. Такая процедура рекомендована для защиты элементов интегральных микросхем, создания на полупроводниковых материалах, сплавах и сталях диэлектрических покрытий. При желании анодирование можно выполнить в домашних условиях, но при четком и безоговорочном соблюдении стандартов техники безопасности, так как для операции используются агрессивные соединения.
Частным случаем анодирования считается методика микродугового оксидирования, которая позволяет получать уникальные покрытия с высокими декоративными, теплостойкими, защитными, изоляционными и антикоррозионными параметрами. Микродуговой процесс осуществляется под действием переменного или импульсного тока в электролитах, имеющих слабощелочной характер.
Рассматриваемый способ нанесения специальных слоев обеспечивает толщину покрытий на уровне 200–250 микрометров. После выполнения операции поверхность изделия внешне похоже на керамику. Микродуговое оксидирование при наличии оборудования нередко производят в домашних условиях. Во время процесса в воздух не выделяется каких-либо опасных для человека веществ. По этой причине микродуговая обработка становится все более популярной среди домашних мастеров.
Тонкости термического и плазменного оксидирования
Термический процесс подразумевает, что оксидная пленка формируется на стали в атмосфере водяного пара либо иной кислородсодержащей среде при достаточно высоких температурах. В домашних условиях такую операцию не выполняют, так как она требует использования специальных печей, в которых железо либо низколегированные стали нагревают примерно до 350 градусов.
Если же речь идет об обработке средне- и высоколегированных сталей, температура в печи и вовсе должна равняться 650–700 градусам. Общая длительность термического оксидирования, как правило, составляет около часа.
Практически нереально выполнить в домашних условиях и плазменное оксидирование. Оно производится в низкотемпературной плазме, содержащей кислород. Плазменная среда при этом создается обычно посредством ВЧ- и СВЧ-разрядов, реже применяются разряды постоянного тока. Качество получаемых защитных пленок оксидов при плазменном процессе очень высокое. Поэтому его применяют для нанесения покрытий на ответственные детали:
- кремниевые поверхности;
- полупроводниковые изделия;
- фотокатоды.
Как самостоятельно выполнить операцию?
Самый простой способ нанесения защитного покрытия на стальные изделия в домашних условиях не требует особых умений. При желании оксидирование своими руками может выполнить любой. Сначала деталь, которую планируется обработать, полируют либо зачищают. Затем с ее поверхности удаляют окислы (декапируют), используя для этих целей раствор (пятипроцентный) серной кислоты. Изделие помещают в него на 60 секунд.
После ванны с кислотой деталь необходимо промыть в теплой воде и подвергнуть ее пассивированию – пятиминутному кипячению, которое осуществляют в растворе водопроводной воды с 50 граммами обычного хозяйственного мыла (такое количество моющего средства рассчитано на один литр воды). Теперь поверхность полностью готова к оксидированию. Для реализации процедуры следует:
- взять эмалированную емкость, не имеющую царапин и сколов;
- налить в нее воду (один литр) и развести 50 граммов едкого натра;
- поместить емкость на плиту, положить в нее изделие и подогреть смесь до 140–150 градусов.
Через полтора часа деталь можно доставать – оксидирование успешно завершено!
Комментариев нет:
Отправить комментарий