БЛЕСТЯЩЕЕ МЕДНЕНИЕ ЦИНКА и СПЛАВОВ ЦАМ
Цветная металлургия занимается добычей руд цветных металлов, а также обогащением и выплавкой чистых металлов и их сплавов. Цветные металлы имеют множество ценных свойств: малую плотность (магний, алюминий), высокую теплопроводность (медь), устойчивость к коррозии (титан) и др. Условно они делятся на тяжелые, легкие, благородные и редкие.
Группы металлов
К тяжелым металлам относятся вещества, которые отличаются высокой плотностью. Это кобальт, хром, медь, свинец и др. Некоторые из них (свинец, цинк, медь) применяют в чистом меде, но обычно используют в качестве легирующих элементов.
Плотность легких металлов — менее 5 г/см3. В этой группе относятся алюминий, натрий, калий, литий и др. Их используют как раскислители при изготовлении чистых металлов и сплавов, а также применяют в пиротехнике, медицине, фототехнике и других областях.
Благородные металлы отличаются высокой устойчивостью к коррозии. В данную группу входят платина, золото, серебро, осмий, палладий, родий, иридий и рутений. Они применяются в медицине, электротехнике, приборостроении, ювелирном деле.
Редкие металлы объединены в отдельную группу, так как имеют особые свойства, не характерные для других металлов. Это уран, вольфрам, селен, молибден и др.
Также выделяется группа широко применяемых металлов. В нее входят титан, алюминий, медь, олово, магний и свинец.
Сплавы на основе цветных металлов бывают литейные и деформируемые. Они различаются технологией создания заготовок: из литейных производят детали с помощью литья в металлические или песчаные формы, а из деформируемых делают листы, фасонные профили, проволоку и другие элементы. В этом случае используются методы прессования, ковки и штамповки. Литейные сплавы относятся к металлургии тяжелых металлов, деформируемые — к металлургии легких металлов.
Общие сведения
Цирконий (Zr) — это элемент таблицы Менделеева, атомный номер которого равен 40, а его атомный вес составляет 91,22. При нормальном состоянии и в нормальных условиях, данный материал представляет собой блестящий металл с серебристо-белым оттенком. Плотность такого сырья достигает 6,45 г/см3. Данный металл в чистом виде, не содержащий никаких примесей, отличается тем, что у него очень высокая пластичность, и он очень легко поддается обработке как холодной, так и горячей. Тут стоит отметить, что это сырье, как и титан, к примеру, резко потеряет свои механические свойства, если его соединить с примесями неметаллических веществ. Худшим соединением считается цирконий и кислород.
Алюминий и его сплавы
Алюминий — цветной металл, который имеет серебристо-белый оттенок и плавится при температуре 650°С. В периодической системе ему соответствует символ Al. Этот элемент занимает третье место по распространенности среди всех пород в земной коре (на первом месте — кислород, на втором — кремний). В атмосферных условиях на поверхности алюминия образуется оксидная пленка, препятствующая появлению коррозии.
Важные свойства алюминия:
- Низкая плотность — всего 2,7г/см3 (например, у меди — 8,94г/см3).
- Высокая электрическая проводимость (37*106 См/м) и теплопроводность (203,5 Вт/(м·К)).
- Низкая прочность в чистом виде — 50 МПа.
- Структура кристаллической решетки — кубическая гранецентрированая.
Металл легко обрабатывается давлением. Находит широкое применение в электропромышленности: из алюминия изготавливают проводники электрического тока. При производстве стали его используют для раскисления. Из алюминия также делают посуду, однако она не подходит для приготовления солений и хранения кисломолочных продуктов — элемент неустойчив в щелочной и кислой среде. Некоторые стальные детали покрывают алюминием (процесс алитирования), чтобы повысить их жаростойкость. Из-за невысокой прочности алюминий практически не применяется в чистом виде.
При маркировке алюминия используется буква А в сочетании с числом, которое указывает на содержание металла. Например, марка A99 содержит 99,95% алюминия, а марка А99 — 99,99%. Существует также марка особой чистоты — А999, в которой 99,999% алюминия.
Деформируемые сплавы алюминия
Деформируемые алюминиевые сплавы делятся на упрочняемые и неупрочняемые.
Упрочняемые деформируемые сплавы алюминия — это дуралюмины (система А-Сu-Mg) и высокопрочные сплавы (Аl-Сu-Mg-Zn). Высокие механические свойства и небольшой удельный вес позволяют широко применять эти сплавы в области машиностроения, особенно — в изготовлении деталей для самолетов.
Основными легирующими элементами для дуралюминов служат магний и медь. Эти сплавы маркируются буквой Д с числом. Из Д1 делают лопасти винтов, Д16 используется для лонжеронов, шпангоутов, обшивки самолетов, а Д 17 — для крепежных заклепок.
Высокопрочные сплавы, помимо алюминия, меди и магния, содержат цинк. Обозначаются буквой В и числом, применяются для изготовления деталей сложной конфигурации, лопастей вертолетов, высоконагруженных конструкций.
Неупрочняемые деформируемые алюминиевые сплавы — это сплавы алюминия с марганцем (маркировка — АМц1) и с магнием (AМг2 и АМг3). Они хорошо обрабатываются сваркой, вытяжкой, прокаткой, горячей и холодной штамповкой. Отличаются высокой пластичностью, но при этом не очень прочные. Они выпускаются преимущественно в виде листов, которые применяются для изготовления изделий сложной формы (заклепки, рамы и др.).
Литейные сплавы на основе алюминия
Наиболее широкое применение получили литейные сплавы алюминия и кремния, которые называются силуминами. Они содержат более 4,5% кремния и обозначаются буквами АК с номером марки. Силумины сочетают малый удельный вес с высокими механическими и литейными свойствами. Они применяются для сложного литья авто-, мото- и авиадеталей, а также для производства некоторых видов бытовой техники — мясорубок, теплообменников, санитарно-технических арматур и др.
Задачи для самостоятельного решения.
Несложные задачи с двумя компонентами смеси.
1-1.
Смесь меди и алюминия массой 20 г обработали 96 %-ным раствором азотной кислоты, при этом выделилось 8,96 л газа (н. у.). Определить массовую долю алюминия в смеси.
1-2.
Смесь меди и цинка массой 10 г обработали концентрированным раствором щелочи. При этом выделилось 2,24 л газа (н.y.). Вычислите массовую долю цинка в исходной смеси.
1-3.
Смесь магния и оксида магния массой 6,4 г обработали достаточным количеством разбавленной серной кислоты. При этом выделилось 2,24 л газа (н.у.). Найти массовую долю магния в смеси.
1-4.
Смесь цинка и оксида цинка массой 3,08 г растворили в разбавленной серной кислоте. Получили сульфат цинка массой 6,44 г. Вычислите массовую долю цинка в исходной смеси.
1-5.
При действии смеси порошков железа и цинка массой 9,3 г на избыток раствора хлорида меди (II) образовалось 9,6 г меди. Определите состав исходной смеси.
1-6.
Какая масса 20%-ного раствора соляной кислоты потребуется для полного растворения 20 г смеси цинка с оксидом цинка, если при этом выделился водород объемом 4,48 л (н.у.)?
1-7.
При растворении в разбавленной азотной кислоте 3,04 г смеси железа и меди выделяется оксид азота (II) объемом 0,896 л (н.у.). Определите состав исходной смеси.
1-8.
При растворении 1,11 г смеси железных и алюминиевых опилок в 16%-ном растворе соляной кислоты (ρ = 1,09 г/мл) выделилось 0,672 л водорода (н.у.). Найдите массовые доли металлов в смеси и определите объем израсходованной соляной кислоты.
Задачи более сложные.
2-1.
Смесь кальция и алюминия массой 18,8 г прокалили без доступа воздуха с избытком порошка графита. Продукт реакции обработали разбавленной соляной кислотой, при этом выделилось 11,2 л газа (н.у.). Определите массовые доли металлов в смеси.
2-2.
Для растворения 1,26 г сплава магния с алюминием использовано 35 мл 19,6%-ного раствора серной кислоты (ρ = 1,1 г/мл). Избыток кислоты вступил в реакцию с 28,6 мл раствора гидрокарбоната калия с концентрацией 1,4 моль/л. Определите массовые доли металлов в сплаве и объем газа (н.у.), выделившегося при растворения сплава.
2-3.
При растворении 27,2 г смеси железа и оксида железа (II) в серной кислоте и выпаривании раствора досуха образовалось 111,2 г железного купороса — гептагидрата сульфата железа (II). Определите количественный состав исходной смеси.
2-4.
При взаимодействии железа массой 28 г с хлором образовалась смесь хлоридов железа (II) и (III) массой 77,7 г. Вычислите массу хлорида железа (III) в полученной смеси.
2-5.
Чему была равна массовая доля калия в его смеси с литием, если в результате обработки этой смеси избытком хлора образовалась смесь, в которой массовая доля хлорида калия составила 80%?
2-6.
После обработки избытком брома смеси калия и магния общей массой 10,2 г масса полученной смеси твердых веществ оказалась равной 42,2 г. Эту смесь обработали избытком раствора гидроксида натрия, после чего осадок отделили и прокалили до постоянной массы. Вычислите массу полученного при этом остатка.
2-7.
Смесь лития и натрия общей массой 7,6 г окислили избытком кислорода, всего было израсходовано 3,92 л (н.у.). Полученную смесь растворили в 80 г 24,5%-го раствора серной кислоты. Вычислите массовые доли веществ в образовавшемся растворе.
2-8.
Сплав алюминия с серебром обработали избытком концентрированного раствора азотной кислоты, остаток растворили в уксусной кислоте. Объемы газов, выделившихся в обеих реакциях измеренные при одинаковых условиях, оказались равными между собой. Вычислите массовые доли металлов в сплаве.
Три металла и сложные задачи.
3-1.
При обработке 8,2 г смеси меди, железа и алюминия избытком концентрированной азотной кислоты выделилось 2,24 л газа. Такой же объем газа выделяется и при обработке этой же смеси такой же массы избытком разбавленной серной кислоты (н.у.). Определите состав исходной смеси в массовых процентах.
3-2.
14,7 г смеси железа, меди и алюминия, взаимодействуя с избытком разбавленной серной кислоты, выделяет 5,6 л водорода (н.у.). Определите состав смеси в массовых процентах, если для хлорирования такой же навески смеси требуется 8,96 л хлора (н.у.).
3-3.
Железные, цинковые и алюминиевые опилки смешаны в мольном отношении 2:4:3 (в порядке перечисления). 4,53 г такой смеси обработали избытком хлора. Полученную смесь хлоридов растворили в 200 мл воды. Определить концентрации веществ в полученном растворе.
3-4.
Сплав меди, железа и цинка массой 6 г (массы всех компонентов равны) поместили в 18,25 % раствор соляной кислоты массой 160 г. Рассчитайте массовые доли веществ в получившемся растворе.
3-5.
13,8 г смеси, состоящей из кремния, алюминия и железа, обработали при нагревании избытком гидроксида натрия, при этом выделилось 11,2 л газа (н.у.). При действии на такую массу смеси избытка соляной кислоты выделяется 8,96 л газа (н.у.). Определите массы веществ в исходной смеси.
3-6.
При обработке смеси цинка, меди и железа избытком концентрированного раствора щелочи выделился газ, а масса нерастворившегося остатка оказалась в 2 раза меньше массы исходной смеси. Этот остаток обработали избытком соляной кислоты, объем выделившегося газа при этом оказался равным объему газа, выделившегося в первом случае (объемы измерялись при одинаковых условиях). Вычислите массовые доли металлов в исходной смеси.
3-7.
Имеется смесь кальция, оксида кальция и карбида кальция с молярным соотношением компонентов 3:2:5 (в порядке перечисления). Какой минимальный объем воды может вступить в химическое взаимодействие с такой смесью массой 55,2 г?
3-8.
Смесь хрома, цинка и серебра общей массой 7,1 г обработали разбавленной соляной кислотой, масса нерастворившегося остатка оказалась равной 3,2 г. Раствор после отделения осадка обработали бромом в щелочной среде, а по окончании реакции обработали избытком нитрата бария. Масса образовавшегося осадка оказалась равной 12,65 г. Вычислите массовые доли металлов в исходной смеси.
Сплавы на основе меди
Медь — цветной металл, который на поверхности имеет красный оттенок, а в изломе — розовый. В периодической системе Д.И. Менделеева обозначается символом Cu. В чистом виде металл имеет высокую степень пластичности, электро- и теплопроводности, а также характеризуется устойчивостью к коррозии. Это позволяет использовать медь и ее сплавы для кровель ответственных зданий.
Важные свойства металла:
- Температура плавления — 1083°С.
- Структура кристаллической решетки — кубическая гранецентрированая.
- Плотность — 8,94 г/см3.
Благодаря пластичности медь легко поддается обработке давлением, но плохо режется. Из-за большой усадки металл обладает низкими литейными свойствами. Любые примеси, за исключением серебра, оказывают большое влияние на вещество и снижают его электрическую проводимость.
При маркировке меди используется буква М с числом, которое обозначает марку. Чем меньше номер марки, тем больше в ней чистого вещества. Например, М00 содержит 99,99 % меди, а М4 — 99 %.
Наиболее широкое применение в технике находят две группы медных сплавов — бронзы и латуни.
Бронзы
Бронзы — сплавы на основе меди, в которых легирующим элементом является любой металл, кроме цинка. Наиболее часто применяются сплавы меди со свинцом, оловом, алюминием, кремнием и сурьмой.
Все бронзы по химическому составу делятся на оловянные и специальные, или безоловянные, то есть не содержащие в своем составе олова.
Оловянные бронзы отличаются наиболее высокими литейными, механическими и антифрикционными свойствами, а также имеют повышенную устойчивость к коррозии. Из-за высокой стоимости олова эти сплавы применяют ограниченно.
Специальные бронзы часто используют в качестве заменителей оловянных, и некоторые имеют лучшие технологические свойства. Выделяются следующие виды специальных бронз:
- Алюминиевые. Они содержат от 5% до 11% алюминия, а также марганец, никель, железо и другие металлы. Эти сплавы обладают более высокими механическими свойствами, чем оловянные бронзы, однако их литейные свойства ниже. Алюминиевые бронзы служат для изготовления мелких ответственных деталей.
- Свинцовистые. В их состав входит около 30% свинца. Эти сплавы имеют высокие антифрикционные свойства, поэтому широко применяются в производстве подшипников.
- Кремнистые. Эти бронзы содержат примерно 4% кремния, легируются никелем и марганцем. По своим механическим свойствам почти соответствуют сталям. Применяются, в основном, для изготовления пружинистых элементов в судостроении и авиации.
- Бериллиевые. Содержат до 2,3% бериллия, характеризуются высокой упругостью, твердостью и износостойкостью. Эти бронзы используются для пружин, которые работают в условиях агрессивной среды.
Все бронзы имеют хорошие антифрикционные показатели, коррозионную стойкость, высокие литейные свойства, которые позволяют использовать сплавы для изготовления памятников, отливки колоколов и др.
При маркировке бронз используются начальные буквы Бр, после которых идут первые буквы названий основных металлов с указанием их содержания в процентах. Например, сплав БрОФ8-0,3 включает 8% олова и 0,3% фосфора.
Латуни
Латунями называют сплавы меди и цинка с добавлением других металлов — алюминия, свинца, никеля, марганца, кремния и др. В простых латунях содержится только медь и цинк, а многокомпонентные сплавы включают от 1% до 8% различных легирующих элементов, которые добавляют для улучшения различных свойств.
- Марганец, никель и алюминий повышают устойчивость сплава к коррозии и его механические свойства.
- Благодаря добавкам кремния сплав становится более текучим в жидком состоянии и легче поддается сварке.
- Свинец упрощает обработку резанием.
Процентное содержание цинка в любой латуни не превышает 50 %. Эти сплавы стоят дешевле, чем чистая медь, а благодаря добавлению цинка и легирующих элементов, они обладает большей устойчивостью к коррозии, прочностью и вязкостью, а также характеризуются высокими литейными свойствами. Латуни используют для изготовления деталей методами прокатки, вытяжки, штамповки и др.
При маркировке простой латуни используется буква Л и число, обозначающее содержание меди. Например, марка Л96 содержит 96% меди. Для многокомпонентных латуней используется сложная формула: буква Л, затем первые буквы основных металлов, цифра, обозначающая содержание меди, а затем состав других элементов по порядку. Например, латунь ЛАМш77-2–0,05 содержит 77% меди, 2% алюминия, 0,05% мышьяка, остальное — цинк.
История и происхождение названия
Несмотря на то, что цинк как химический элемент был открыт только в XVI веке, латунь была известна ещё до нашей эры[1][2]. Моссинойки получали её, сплавляя медь с галмеем[3], то есть с цинковой рудой. В Англии латунь была впервые получена путём сплавления меди с металлическим цинком, этот метод 13 июля 1781 года запатентовал Джеймс Эмерсон (британский патент № 1297)[4][5]. В XIX веке в Западной Европе и России латунь использовали в качестве поддельного золота.
Во времена Августа в Риме латунь называлась орихалк (лат. aurichalcum — буквально «златомедь»), из неё чеканились сестерции и дупондии. Орихалк получил название от цвета сплава, похожего на цвет золота. Однако в самой Римской империи до завоевания Британии в I веке н. э. латунь не производилась, поскольку у римлян не было доступа к источникам цинка (которые появились и стали разрабатываться только после образования провинции Британия в составе империи), до этого цинк мог только ввозиться эллинскими и римскими торговцами, собственной его добычи в континентальной Европе и Средиземноморье не было[6].
Общая мировая потребность в цинке для изготовления латуни составляет в настоящее время около 2,1 млн т. При этом в производстве используется 1 млн т первичного цинка, 600 тыс. т цинка, полученного из отходов собственного производства, и 0,5 млн т вторичного сырья[источник не указан 822 дня
]. Таким образом, более 50 % цинка, используемого в производстве латуни, получают из отходов. Технические латуни содержат обычно до 48-50 % цинка. В зависимости от содержания цинка различают альфа-латуни и альфа+бета-латуни. Однофазные альфа-латуни (до 35 % цинка) хорошо деформируются в горячем и холодном состояниях. В свою очередь двухфазные альфа+бета-латуни (до 47- 50 % цинка) малопластичны в холодном состоянии. Их обычно подвергают горячей обработке давлением при температурах, соответствующих области альфа- или альфа+бета-фаз. По сравнению с альфа-латунью двухфазные латуни обладают большей прочностью и износостойкостью при меньшей пластичности. Двойные латуни нередко легируют алюминием, железом, магнием, свинцом или другими элементами. Такие латуни называют специальными или многокомпонентными. Легирующие элементы (кроме свинца) увеличивают прочность (твёрдость), но уменьшают пластичность латуни. Содержание в латуни свинца (до 4 %) облегчает обработку резанием и улучшает антифрикционные свойства. Алюминий, цинк, кремний и никель увеличивают коррозионную стойкость латуни. Добавление в латунь железа, никеля и магния повышает её прочность.
Магний и его сплавы
Магний — цветной металл, который имеет серебристый оттенок и обозначается символом Mg в периодической системе.
Важные свойства магния:
- Температура плавления — 650°С.
- Плотность — 1,74 г/см3.
- Твердость — 30-40 НВ.
- Относительное удлинение — 6-17%.
- Временное сопротивление — 100-190 МПа.
Металл обладает высокой химической активностью, в атмосферных условиях неустойчив к образованию коррозии. Он хорошо режется, воспринимает ударные нагрузки и гасит вибрации. Так как магний имеет низкие механические свойства, он практически не применяется в конструкционных целях, зато используется в пиротехнике, химической промышленности и металлургии. Он часто выступает в качестве восстановителя, легирующего элемента и раскислителя при изготовлении сплавов.
При маркировке используются буквы Мг с цифрами, которые обозначают процентное содержание магния. Например, в марке Мг96 содержится 99,96% магния, а в Мг90 — 99,9 %.
Сплавы на основе магния характеризуются высокой удельной прочность (предел прочности — до 400 МПа). Они хорошо режутся, шлифуются, полируются, куются, прессуются, прокатываются. Из недостатков магниевых сплавов — низкая устойчивость к коррозии, плохие литейные свойства, склонность воспламеняться при изготовлении.
Деформируемые сплавы магния
Наиболее распространены три группы сплавов на основе магния.
Сплавы магния, легированные марганцем
Содержат до 2,5% марганца, не упрочняются термической обработкой. У них хорошая коррозионная стойкость. Так как эти сплавы легко свариваются, они применяются для сварных деталей несложной конфигурации, а также для деталей арматуры, масляных и бензиновых систем, которые не испытывают больших нагрузок. Среди данной группы — сплавы МА1 и МА8.
Сплавы системы Mg-Al-Zn-Mn
В состав этих сплавов, помимо магния и марганца, входят алюминий и цинк. Они заметно повышают прочность и пластичность, благодаря чему сплавы подходят для изготовления штампованных и кованых деталей сложных форм. К этой группе относятся марки МА2-1 и МА5.
Сплавы системы Mg-Zn
Сплавы на основе магния и цинка дополнительно легируются кадмием, цирконием и редкоземельными металлами. Это высокопрочные магниевые сплавы, которые применяются для деталей, испытывающих высокие нагрузки (в самолетах, автомобилях, станках и др.). К данной группе относятся сплавы марок МА14, МА15, МА19.
Литейные сплавы магния
Самая распространенная группа литейных магниевых сплавов относится к системе Mg-Al-Zn. Эти сплавы практически не поглощают тепловые нейтроны, поэтому широко применяются в атомной технике. Из них также делают детали самолетов, ракет, автомобилей (двери кабин, корпуса приборов, топливные баки и др.). Сплавы магния, цинка и алюминия используют в приборостроении и в изготовлении кожухов для электронной аппаратуры. К данной группе относятся марки МЛ5 и МЛ6.
Высокопрочные литейные магниевые сплавы отличаются лучшими механическими и технологическими свойствами. Они применяются в авиации для изготовления нагруженных деталей. К данной группе относятся сплавы МЛ12 (магний, цинк и цирконий), МЛ8 (магний, цинк, цирконий и кадмий), МЛ9 (магний, цирконий, неодим), МЛ10 (магний, цинк, цирконий, неодим).
Физические свойства
Такой сплав как силумин по физическим свойствам очень часто сравнивают с нержавеющей сталью. Но он значительно легче стали, что является главным его достоинством. Несмотря на низкий вес, прочность силумина не уступает стали и другим металлам-аналогам. Как и алюминий, этот сплав не поддается коррозии этому способствует защитная пленка, которая образуется из оксидных соединений. Такая пленка образуется на поверхности при малейших повреждения путем взаимодействия кислорода и молекул алюминия.
Цвет силумина серый, при разрезе серебристый, очень сильно напоминает цвет алюминия.
Декоративные элементы из силумина
Легкий вес сплава при высокой прочности возможен благодаря низкой плотности состава, которая значительно ниже чем у стали. Учитывая вышеизложенные преимущества, применение силумина на сегодняшний день предпочтительней применению стали. Учитывая относительно низкую стоимость сплава, силумин используется для производства дешевой бытовой техники, которая часто не уступает в надежности дорогим аналогам.
Его преимуществом также является пластичность. Благодаря этому он подходит для литься сложных форм, требующих равномерного распределения металла и прочной структуры. Литье в данном случае требует меньше усилий, что делает производство экономичнее.
Температура плавления силумина составляет около 670 градусов, что намного ниже температуры плавления стали. Такое физическое свойство также влияет на снижение себестоимости металлических изделий.
Следует отметить, что физические свойства напрямую зависят от количества примесей. К таким относятся магний и марганец, которые добавляют целенаправленно. Или же цинк, кальций и железо, от которых просто не избавляются на производстве. Поэтому качество силумина может отличатся даже при одинаковой маркировке — оно зависит от технологии производства и добросовестности производителя.
К физически свойствам также относиться повышенная износостойкость. Изделия из этого вещества отличаются устойчивостью к механическим нагрузкам и длительным сроком эксплуатации.
Силуминовая головка блока ДВС
К недостатком материала можно отнести хрупкость. Изделия обладают повышенным уровнем прочности, но при превышении этого порога они могут треснуть. Их можно отремонтировать, для чего используют либо эпоксидный клей, либо сварку. Но сварочные работы следует проводить с осторожностью, чтобы не расплавить изделие. Обычно используют аргон с припоями для сварки алюминия.
Цинк и его сплавы
Цинк — цветной металл серо-голубоватого оттенка. В системе Д. И. Менделеева обозначается символом Zn. Он обладает высокой вязкостью, пластичностью и коррозионной стойкостью. Важные свойства металла:
- Небольшая температура плавления — 419 °С.
- Высокая плотность — 7,1 г/см3.
- Низкая прочность — 150 МПа.
В чистом виде цинк используется для оцинкования стали с целью защиты от коррозии. Применяется в полиграфии, типографии и гальванике. Его часто добавляют в сплавы, преимущественно в медные.
Существуют следующие марки цинка: ЦВ00, ЦВ0, ЦВ, Ц0А, Ц0, Ц1, Ц2 и Ц3. ЦВ00 — самая чистая марка с содержанием цинка в 99,997%. Самый низкий процент чистого вещества в марке Ц3 — 97,5%.
Деформируемые цинковые сплавы
Деформируемые сплавы цинка используются для производства деталей методами вытяжки, прессования и прокатки. Они обрабатываются в горячем состоянии при температуре от 200 до 300 ?С. В качестве легирующих элементов выступают медь (до 5%), алюминий (до 15%) и магний (до 0,05%).
Деформируемые цинковые сплавы характеризуются высокими механическими свойствами, благодаря которым часто используются в качестве заменителей латуней. Они обладают высокой прочностью при хорошей пластичности. Сплавы цинка, алюминия и меди наиболее распространены, так как они имеют самые высокие механические свойства.
Литейные цинковые сплавы
В литейных цинковых сплавах легирующими элементами также выступают медь, алюминий и магний. Сплавы делятся на 4 группы:
- Для литья под давлением.
- Антифрикционные.
- Для центробежного литья.
- Для литья в кокиль.
Слитки легко полируются и принимают гальванические покрытия. Литейные цинковые сплавы имеют высокую текучесть в жидком состоянии и образуют плотные отливки в застывшем виде.
Литейные сплавы получили широкое применение в автомобильной промышленности: из них делают корпуса насосов, карбюраторов, спидометров, радиаторных решеток. Сплавы также используются для производства некоторых видов бытовой техники, арматуры, деталей приборов.
В России цветная металлургия — одна из самых конкурентоспособных отраслей промышленности. Многие отечественные компании являются мировыми лидерами в никелевой, титановой, алюминиевой подотраслях. Эти достижения стали возможными благодаря крупным инвестициям в цветную металлургию и применению инновационных технологий.
Особенности получения цинка ЦАМ4-1
Особенности получения цинка ЦАМ4-1: марка относится к сплавам системы Zn-Al-Cu. К промышленным сплавам этой системы также относятся сплавы ЦАМ4-3, ЦАМ10-5, ЦАМ9-4,5. Сплавы типа ЦАМ при плавке в тигельных печах готовят следующим образом.
В тигель, предварительно очищенный и разогретый до 400—500 °С, или в печь, подогретую до 500—600 °С, загружают примерно 2/3 необходимого по расчету количества цинка, алюминиево-медную лигатуру (50 % А1 и 50 % Си), а также чистые алюминий и медь в количествах, определяемых расчетом шихты в зависимости от марки сплава. Шихту засыпают хорошо прокаленным древесным углем. По мере расплавления загруженной части шихты сплав перемешивают, и при температуре 480—500 °С догружают остальной частью цинка (1/3 от общего количества). Непосредственно перед разливкой в расплав вводят магний с помощью дырчатого колокольчика.
Готовый сплав при 470—490 °С рафинируют хлористым цинком или хлористым аммонием (0,1-0,2 % от массы шихты). После отстаивания и удаления с поверхности расплава шлака сплав направляют на разливку.
Плавку ведут при 470-500 °С. Сплавы цинка, в которых основным легирующим компонентом является медь (ЦАМ4-3, ЦАМ10-5), допустимо выплавлять при более высоких температурах (500-550 °С).
Цирконий в атомной энергетике
До 50-х годов прошлого столетия считалось, что цирконий не пригоден для использования в этой сфере. Однако именно в 50-х гг. был впервые получен материал, который полностью очищен от такой примеси, как гафний. После очистки оказалось, что чистый цирконий обладает очень малым поперечным сечением поглощения тепловых нейтронов. Именно это качество стало основным и дало возможность использовать циркониевые сплавы в атомной энергетике.
Стоит добавить, что использовать просто очищенный цирконий не получалось из-за того, что стойкость к коррозии была слишком низкой в горячей воде. После этого было принято решение об использовании именно сплавов на основе циркония. Они отлично зарекомендовали себя при применении в реакторах с пароводяным теплоносителем, а также в других подобных агрессивных средах.
Комментариев нет:
Отправить комментарий